NCERT Solutions for Class 10 Maths Chapter 6 Triangles

NCERT Solutions for Class 10 Maths Chapter 6 Triangles

NCERT Solutions for Class 10 Maths Chapter 6 โ€“ Download Free PDF

NCERT Solutions for Class 10 Maths Chapter 6 Triangles are provided here which is considered to be one of the most important study materials for the students studying in CBSE Class 10. Chapter 6 of NCERT Solutions for Class 10 Maths is the triangles and it covers a vast topic including a number of rules and theorems. Students often tend to get confused about which theorem to use while solving one particular question.

The solutions provided at BYJUโ€™S are in such a way that every step while solving a problem, is explained clearly and in detail. The Solutions for NCERT Class 10 Maths are prepared by the subject experts to help students in their board exam preparation in a better way. These solutions can be helpful not only for exam preparations but also in solving homework and assignments.

The CBSE Class 10 examination often asks questions, either directly or indirectly, from the NCERT textbooks and, thus, the NCERT Solutions for Chapter 6 Triangles of Class 10 Maths is one of the best resources to prepare and equip oneself to solve any type of questions in the exam, from the chapter. It is highly recommended for the students to practice these NCERT Solutions on a regular basis to excel in the Class 10 Board examination.Chapter 6 Triangles

Download PDF of NCERT Solutions for Class 10 Maths 6- Triangles

ncert solutions for class 10 maths chapter 6 ex 1 1
ncert solutions for class 10 maths chapter 6 ex 1 2

Access Answers of NCERT Class 10 Maths Chapter 6 โ€“ Triangles

Exercise 6.1 Page: 122

1. Fill in the blanks using correct word given in the brackets:-

(i) All circles are __________. (congruent, similar)

Answer: Similar

(ii) All squares are __________. (similar, congruent)

Answer: Similar

(iii) All __________ triangles are similar. (isosceles, equilateral)

Answer: Equilateral

(iv) Two polygons of the same number of sides are similar, if (a) their corresponding angles are __________ and (b) their corresponding sides are __________. (equal, proportional)

Answer: (a) Equal

(b) Proportional

2. Give two different examples of pair of
(i) Similar figures
(ii) Non-similar figures

Solution:

Ncert solutions class 10 chapter 6-1
Ncert solutions class 10 chapter 6-2

3. State whether the following quadrilaterals are similar or not:

Ncert solutions class 10 chapter 6-3

Solution:

From the given two figures, we can see their corresponding angles are different or unequal. Therefore they are not similar.


Exercise 6.2 Page: 128

1. In figure. (i) and (ii), DE || BC. Find EC in (i) and AD in (ii).

Ncert solutions class 10 chapter 6-4

Solution:

(i) Given, in โ–ณ ABC, DEโˆฅBC

โˆด AD/DB = AE/EC [Using Basic proportionality theorem]

โ‡’1.5/3 = 1/EC

โ‡’EC = 3/1.5

EC = 3ร—10/15 = 2 cm

Hence, EC = 2 cm.

(ii) Given, in โ–ณ ABC, DEโˆฅBC

โˆด AD/DB = AE/EC [Using Basic proportionality theorem]

โ‡’ AD/7.2 = 1.8 / 5.4

โ‡’ AD = 1.8 ร—7.2/5.4 = (18/10)ร—(72/10)ร—(10/54) = 24/10

โ‡’ AD = 2.4

Hence, AD = 2.4 cm.

2. E and F are points on the sides PQ and PR respectively of a ฮ”PQR. For each of the following cases, state whether EF || QR.
(i) PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm and FR = 2.4 cm

(ii) PE = 4 cm, QE = 4.5 cm, PF = 8 cm and RF = 9 cm
(iii) PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm and PF = 0.63 cm

Solution:

Given, in ฮ”PQR, E and F are two points on side PQ and PR respectively. See the figure below;

Triangles Exercise 6.2 Answer 3

(i) Given, PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm and FR = 2,4 cm

Therefore, by using Basic proportionality theorem, we get,

PE/EQ = 3.9/3 = 39/30 = 13/10 = 1.3

And PF/FR = 3.6/2.4 = 36/24 = 3/2 = 1.5

So, we get, PE/EQ โ‰  PF/FR

Hence, EF is not parallel to QR.

(ii) Given, PE = 4 cm, QE = 4.5 cm, PF = 8cm and RF = 9cm

Therefore, by using Basic proportionality theorem, we get,

PE/QE = 4/4.5 = 40/45 = 8/9

And, PF/RF = 8/9

So, we get here,

PE/QE = PF/RF

Hence, EF is parallel to QR.

(iii) Given, PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm and PF = 0.36 cm

From the figure,

EQ = PQ โ€“ PE = 1.28 โ€“ 0.18 = 1.10 cm

And, FR = PR โ€“ PF = 2.56 โ€“ 0.36 = 2.20 cm

So, PE/EQ = 0.18/1.10 = 18/110 = 9/55โ€ฆโ€ฆโ€ฆโ€ฆ. (i)

And, PE/FR = 0.36/2.20 = 36/220 = 9/55โ€ฆโ€ฆโ€ฆโ€ฆ (ii)

So, we get here,

PE/EQ = PF/FR

Hence, EF is parallel to QR.

3. In the figure, if LM || CB and LN || CD, prove that AM/AB = AN/AD

Ncert solutions class 10 chapter 6-6

Solution:

In the given figure, we can see, LM || CB,

By using basic proportionality theorem, we get,

AM/AB = AL/ACโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..(i)

Similarly, given, LN || CD and using basic proportionality theorem,

โˆดAN/AD = AL/ACโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(ii)

From equation (i) and (ii), we get,

AM/AB = AN/AD

Hence, proved.

4. In the figure, DE||AC and DF||AE. Prove that BF/FE = BE/EC

Ncert solutions class 10 chapter 6-7

Solution:

In ฮ”ABC, given as, DE || AC

Thus, by using Basic Proportionality Theorem, we get,

โˆดBD/DA = BE/EC โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(i)

In  ฮ”ABC, given as, DF || AE

Thus, by using Basic Proportionality Theorem, we get,

โˆดBD/DA = BF/FE โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(ii)

From equation (i) and (ii), we get

BE/EC = BF/FE

Hence, proved.

5. In the figure, DE||OQ and DF||OR, show that EF||QR.

Ncert solutions class 10 chapter 6-8

Solution:

Given,

In ฮ”PQO, DE || OQ

So by using Basic Proportionality Theorem,

PD/DO = PE/EQโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ ..(i)

Again given, in ฮ”POR, DF || OR,

So by using Basic Proportionality Theorem,

PD/DO = PF/FRโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (ii)

From equation (i) and (ii), we get,

PE/EQ = PF/FR

Therefore, by converse of Basic Proportionality Theorem,

EF || QR, in ฮ”PQR.

6. In the figure, A, B and C are points on OP, OQ and OR respectively such that AB || PQ and AC || PR. Show that BC || QR.

Ncert solutions class 10 chapter 6-9

Solution:

Given here,

In ฮ”OPQ, AB || PQ

By using Basic Proportionality Theorem,

OA/AP = OB/BQโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(i)

Also given,

In ฮ”OPR, AC || PR

By using Basic Proportionality Theorem

โˆด OA/AP = OC/CRโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(ii)

From equation (i) and (ii), we get,

OB/BQ = OC/CR

Therefore, by converse of Basic Proportionality Theorem,

In ฮ”OQR, BC || QR.

7. Using Basic proportionality theorem, prove that a line drawn through the mid-points of one side of a triangle parallel to another side bisects the third side. (Recall that you have proved it in Class IX).

Ncert solutions class 10 chapter 6-10

Solution:

Given, in ฮ”ABC, D is the midpoint of AB such that AD=DB.

A line parallel to BC intersects AC at E as shown in above figure such that DE || BC.

We have to prove that E is the mid point of AC.

Since, D is the mid-point of AB.

โˆด AD=DB

โ‡’AD/DB = 1 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ. (i)

In ฮ”ABC, DE || BC,

By using Basic Proportionality Theorem,

Therefore, AD/DB = AE/EC

From equation (i), we can write,

โ‡’ 1 = AE/EC

โˆด AE = EC

Hence, proved, E is the midpoint of AC.

8. Using Converse of basic proportionality theorem, prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side. (Recall that you have done it in Class IX).

Solution:

Given, in ฮ”ABC, D and E are the mid points of AB and AC respectively, such that,

AD=BD and AE=EC.

Ncert solutions class 10 chapter 6-11

We have to prove that: DE || BC.

Since, D is the midpoint of AB

โˆด AD=DB

โ‡’AD/BD = 1โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (i)

Also given, E is the mid-point of AC.

โˆด AE=EC

โ‡’ AE/EC = 1

From equation (i) and (ii), we get,

AD/BD = AE/EC

By converse of Basic Proportionality Theorem,

DE || BC

Hence, proved.

9. ABCD is a trapezium in which AB || DC and its diagonals intersect each other at the point O. Show that AO/BO = CO/DO.

Solution:

Given, ABCD is a trapezium where AB || DC and diagonals AC and BD intersect each other at O.

Ncert solutions class 10 chapter 6-12

We have to prove, AO/BO = CO/DO

From the point O, draw a line EO touching AD at E, in such a way that,

EO || DC || AB

In ฮ”ADC, we have OE || DC

Therefore, By using Basic Proportionality Theorem

AE/ED = AO/CO โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..(i)

Now, In ฮ”ABD, OE || AB

Therefore, By using Basic Proportionality Theorem

DE/EA = DO/BOโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(ii)

From equation (i) and (ii), we get,

AO/CO = BO/DO

โ‡’AO/BO = CO/DO

Hence, proved.

10. The diagonals of a quadrilateral ABCD intersect each other at the point O such that AO/BO = CO/DO. Show that ABCD is a trapezium.

Solution:

Given, Quadrilateral ABCD where AC and BD intersects each other at O such that,

AO/BO = CO/DO.

Ncert solutions class 10 chapter 6-13

We have to prove here, ABCD is a trapezium

From the point O, draw a line EO touching AD at E, in such a way that,

EO || DC || AB

In ฮ”DAB, EO || AB

Therefore, By using Basic Proportionality Theorem

DE/EA = DO/OB โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(i)

Also, given,

AO/BO = CO/DO

โ‡’ AO/CO = BO/DO

โ‡’ CO/AO = DO/BO

โ‡’DO/OB = CO/AO โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..(ii)

From equation (i) and (ii), we get

DE/EA = CO/AO

Therefore, By using converse of Basic Proportionality Theorem,

EO || DC also EO || AB

โ‡’ AB || DC.

Hence, quadrilateral ABCD is a trapezium with AB || CD.


Exercise 6.3 Page: 138

1. State which pairs of triangles in Figure, are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:

Ncert solutions class 10 chapter 6-14

Solution:

(i) Given, in ฮ”ABC and ฮ”PQR,

โˆ A = โˆ P = 60ยฐ

โˆ B = โˆ Q = 80ยฐ

โˆ C = โˆ R = 40ยฐ

Therefore by AAA similarity criterion,

โˆด ฮ”ABC ~ ฮ”PQR

(ii) Given, in  ฮ”ABC and ฮ”PQR,

AB/QR = BC/RP = CA/PQ

By SSS similarity criterion,

ฮ”ABC ~ ฮ”QRP

(iii) Given, in ฮ”LMP and ฮ”DEF,

LM = 2.7, MP = 2, LP = 3, EF = 5, DE = 4, DF = 6

MP/DE = 2/4 = 1/2

PL/DF = 3/6 = 1/2

LM/EF = 2.7/5 = 27/50

Here , MP/DE = PL/DF โ‰  LM/EF

Therefore, ฮ”LMP and ฮ”DEF are not similar.

(iv) In ฮ”MNL and ฮ”QPR, it is given,

MN/QP = ML/QR = 1/2

โˆ M = โˆ Q = 70ยฐ

Therefore, by SAS similarity criterion

โˆด ฮ”MNL ~ ฮ”QPR

(v) In ฮ”ABC and ฮ”DEF, given that,

AB = 2.5, BC = 3, โˆ A = 80ยฐ, EF = 6, DF = 5, โˆ F = 80ยฐ

Here , AB/DF = 2.5/5 = 1/2

And, BC/EF = 3/6 = 1/2

โ‡’ โˆ B โ‰  โˆ F

Hence, ฮ”ABC and ฮ”DEF are not similar.

(vi) In ฮ”DEF, by sum of angles of triangles, we know that,

โˆ D + โˆ E + โˆ F = 180ยฐ

โ‡’ 70ยฐ + 80ยฐ + โˆ F = 180ยฐ

โ‡’ โˆ F = 180ยฐ โ€“ 70ยฐ โ€“ 80ยฐ

โ‡’ โˆ F = 30ยฐ

Similarly, In ฮ”PQR,

โˆ P + โˆ Q + โˆ R = 180 (Sum of angles of ฮ”)

โ‡’ โˆ P + 80ยฐ + 30ยฐ = 180ยฐ

โ‡’ โˆ P = 180ยฐ โ€“ 80ยฐ -30ยฐ

โ‡’ โˆ P = 70ยฐ

Now, comparing both the triangles, ฮ”DEF and ฮ”PQR, we have

โˆ D = โˆ P = 70ยฐ

โˆ F = โˆ Q = 80ยฐ

โˆ F = โˆ R = 30ยฐ

Therefore, by AAA similarity criterion,

Hence, ฮ”DEF ~ ฮ”PQR

2.  In the figure, ฮ”ODC โˆ ยผ ฮ”OBA, โˆ  BOC = 125ยฐ and โˆ  CDO = 70ยฐ. Find โˆ  DOC, โˆ  DCO and โˆ  OAB.

Ncert solutions class 10 chapter 6-15

Solution:

As we can see from the figure, DOB is a straight line.

Therefore, โˆ DOC + โˆ  COB = 180ยฐ

โ‡’ โˆ DOC = 180ยฐ โ€“ 125ยฐ (Given, โˆ  BOC = 125ยฐ)

= 55ยฐ

In ฮ”DOC, sum of the measures of the angles of a triangle is 180ยบ

Therefore, โˆ DCO + โˆ  CDO + โˆ  DOC = 180ยฐ

โ‡’ โˆ DCO + 70ยบ + 55ยบ = 180ยฐ(Given, โˆ  CDO = 70ยฐ)

โ‡’ โˆ DCO = 55ยฐ

It is given that, ฮ”ODC โˆ ยผ ฮ”OBA,

Therefore, ฮ”ODC ~ ฮ”OBA.

Hence, Corresponding angles are equal in similar triangles

โˆ OAB = โˆ OCD

โ‡’ โˆ  OAB = 55ยฐ

โˆ OAB = โˆ OCD

โ‡’ โˆ OAB = 55ยฐ

3. Diagonals AC and BD of a trapezium ABCD with AB || DC intersect each other at the point O. Using a similarity criterion for two triangles, show that AO/OC = OB/OD

Solution:

Ncert solutions class 10 chapter 6-16

In ฮ”DOC and ฮ”BOA,

AB || CD, thus alternate interior angles will be equal,

โˆดโˆ CDO = โˆ ABO

Similarly,

โˆ DCO = โˆ BAO

Also, for the two triangles ฮ”DOC and ฮ”BOA, vertically opposite angles will be equal;

โˆดโˆ DOC = โˆ BOA

Hence, by AAA similarity criterion,

ฮ”DOC ~ ฮ”BOA

Thus, the corresponding sides are proportional.

DO/BO = OC/OA

โ‡’OA/OC = OB/OD

Hence, proved.

4. In the fig.6.36, QR/QS = QT/PR and โˆ 1 = โˆ 2. Show that ฮ”PQS ~ ฮ”TQR.

Ncert solutions class 10 chapter 6-17

Solution:

In ฮ”PQR,

โˆ PQR = โˆ PRQ

โˆด PQ = PR โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(i)

Given,

QR/QS = QT/PRUsing equation (i), we get

QR/QS = QT/QPโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(ii)

In ฮ”PQS and ฮ”TQR, by equation (ii),

QR/QS = QT/QP

โˆ Q = โˆ Q

โˆด ฮ”PQS ~ ฮ”TQR [By SAS similarity criterion]

5. S and T are point on sides PR and QR of ฮ”PQR such that โˆ P = โˆ RTS. Show that ฮ”RPQ ~ ฮ”RTS.

Solution:

Given, S and T are point on sides PR and QR of ฮ”PQR

And โˆ P = โˆ RTS.

Ncert solutions class 10 chapter 6-18

In ฮ”RPQ and ฮ”RTS,

โˆ RTS = โˆ QPS (Given)

โˆ R = โˆ R (Common angle)

โˆด ฮ”RPQ ~ ฮ”RTS (AA similarity criterion)

6. In the figure, if ฮ”ABE โ‰… ฮ”ACD, show that ฮ”ADE ~ ฮ”ABC.

Ncert solutions class 10 chapter 6-19

Solution:

Given, ฮ”ABE โ‰… ฮ”ACD.

โˆด AB = AC [By CPCT] โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(i)

And, AD = AE [By CPCT] โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(ii)

In ฮ”ADE and ฮ”ABC, dividing eq.(ii) by eq(i),

AD/AB = AE/AC

โˆ A = โˆ A [Common angle]

โˆด ฮ”ADE ~ ฮ”ABC [SAS similarity criterion]

7. In the figure, altitudes AD and CE of ฮ”ABC intersect each other at the point P. Show that:

Ncert solutions class 10 chapter 6-17

(i) ฮ”AEP ~ ฮ”CDP
(ii) ฮ”ABD ~ ฮ”CBE
(iii) ฮ”AEP ~ ฮ”ADB
(iv) ฮ”PDC ~ ฮ”BEC

Solution:

Given, altitudes AD and CE of ฮ”ABC intersect each other at the point P.

(i) In ฮ”AEP and ฮ”CDP,

โˆ AEP = โˆ CDP (90ยฐ each)

โˆ APE = โˆ CPD (Vertically opposite angles)

Hence, by AA similarity criterion,

ฮ”AEP ~ ฮ”CDP

(ii) In ฮ”ABD and ฮ”CBE,

โˆ ADB = โˆ CEB ( 90ยฐ each)

โˆ ABD = โˆ CBE (Common Angles)

Hence, by AA similarity criterion,

ฮ”ABD ~ ฮ”CBE

(iii) In ฮ”AEP and ฮ”ADB,

โˆ AEP = โˆ ADB (90ยฐ each)

โˆ PAE = โˆ DAB (Common Angles)

Hence, by AA similarity criterion,

ฮ”AEP ~ ฮ”ADB

(iv) In ฮ”PDC and ฮ”BEC,

โˆ PDC = โˆ BEC (90ยฐ each)

โˆ PCD = โˆ BCE (Common angles)

Hence, by AA similarity criterion,

ฮ”PDC ~ ฮ”BEC

8. E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F. Show that ฮ”ABE ~ ฮ”CFB.

Solution:

Given, E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F. Consider the figure below,

Ncert solutions class 10 chapter 6-18

In ฮ”ABE and ฮ”CFB,

โˆ A = โˆ C (Opposite angles of a parallelogram)

โˆ AEB = โˆ CBF (Alternate interior angles as AE || BC)

โˆด ฮ”ABE ~ ฮ”CFB (AA similarity criterion)

9. In the figure, ABC and AMP are two right triangles, right angled at B and M respectively, prove that:

Ncert solutions class 10 chapter 6-19

(i) ฮ”ABC ~ ฮ”AMP

(ii) CA/PA = BC/MP

Solution:

Given, ABC and AMP are two right triangles, right angled at B and M respectively.

(i) In ฮ”ABC and ฮ”AMP, we have,

โˆ CAB = โˆ MAP (common angles)

โˆ ABC = โˆ AMP = 90ยฐ (each 90ยฐ)

โˆด ฮ”ABC ~ ฮ”AMP (AA similarity criterion)

(ii) As, ฮ”ABC ~ ฮ”AMP (AA similarity criterion)

If two triangles are similar then the corresponding sides are always equal,

Hence, CA/PA = BC/MP

10. CD and GH are respectively the bisectors of โˆ ACB and โˆ EGF such that D and H lie on sides AB and FE of ฮ”ABC and ฮ”EFG respectively. If ฮ”ABC ~ ฮ”FEG, Show that:

(i) CD/GH = AC/FG
(ii) ฮ”DCB ~ ฮ”HGE
(iii) ฮ”DCA ~ ฮ”HGF

Solution:

Given, CD and GH are respectively the bisectors of โˆ ACB and โˆ EGF such that D and H lie on sides AB and FE of ฮ”ABC and ฮ”EFG respectively.

Ncert solutions class 10 chapter 6-20

(i) From the given condition,

ฮ”ABC ~ ฮ”FEG.

โˆด โˆ A = โˆ F, โˆ B = โˆ E, and โˆ ACB = โˆ FGE

Since, โˆ ACB = โˆ FGE

โˆด โˆ ACD = โˆ FGH (Angle bisector)

And, โˆ DCB = โˆ HGE (Angle bisector)

In ฮ”ACD and ฮ”FGH,

โˆ A = โˆ F

โˆ ACD = โˆ FGH

โˆด ฮ”ACD ~ ฮ”FGH (AA similarity criterion)

โ‡’CD/GH = AC/FG

(ii) In ฮ”DCB and ฮ”HGE,

โˆ DCB = โˆ HGE (Already proved)

โˆ B = โˆ E (Already proved)

โˆด ฮ”DCB ~ ฮ”HGE (AA similarity criterion)

(iii) In ฮ”DCA and ฮ”HGF,

โˆ ACD = โˆ FGH (Already proved)

โˆ A = โˆ F (Already proved)

โˆด ฮ”DCA ~ ฮ”HGF (AA similarity criterion)

11. In the following figure, E is a point on side CB produced of an isosceles triangle ABC with AB = AC. If AD โŠฅ BC and EF โŠฅ AC, prove that ฮ”ABD ~ ฮ”ECF.

Ncert solutions class 10 chapter 6-21

Solution:

Given, ABC is an isosceles triangle.

โˆด AB = AC

โ‡’ โˆ ABD = โˆ ECF

In ฮ”ABD and ฮ”ECF,

โˆ ADB = โˆ EFC (Each 90ยฐ)

โˆ BAD = โˆ CEF (Already proved)

โˆด ฮ”ABD ~ ฮ”ECF (using AA similarity criterion)

12. Sides AB and BC and median AD of a triangle ABC are respectively proportional to sides PQ and QR and median PM of ฮ”PQR (see Fig 6.41). Show that ฮ”ABC ~ ฮ”PQR.

Ncert solutions class 10 chapter 6-22

Solution:

Given, ฮ”ABC and ฮ”PQR, AB, BC and median AD of ฮ”ABC are proportional to sides PQ, QR and median PM of ฮ”PQR

i.e. AB/PQ = BC/QR = AD/PM

We have to prove: ฮ”ABC ~ ฮ”PQR

As we know here,

AB/PQ = BC/QR = AD/PM

Ncert solutions class 10 chapter 6-23

โ‡’AB/PQ = BC/QR = AD/PM (D is the midpoint of BC. M is the midpoint of QR)

โ‡’ ฮ”ABD ~ ฮ”PQM [SSS similarity criterion]

โˆด โˆ ABD = โˆ PQM [Corresponding angles of two similar triangles are equal]

โ‡’ โˆ ABC = โˆ PQR

In ฮ”ABC and ฮ”PQR

AB/PQ = BC/QR โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(i)

โˆ ABC = โˆ PQR โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(ii)

From equation (i) and (ii), we get,

ฮ”ABC ~ ฮ”PQR [SAS similarity criterion]

13. D is a point on the side BC of a triangle ABC such that โˆ ADC = โˆ BAC. Show that CA2 = CB.CD

Solution:

Given, D is a point on the side BC of a triangle ABC such that โˆ ADC = โˆ BAC.

Ncert solutions class 10 chapter 6-24

In ฮ”ADC and ฮ”BAC,

โˆ ADC = โˆ BAC (Already given)

โˆ ACD = โˆ BCA (Common angles)

โˆด ฮ”ADC ~ ฮ”BAC (AA similarity criterion)

We know that corresponding sides of similar triangles are in proportion.

โˆด CA/CB = CD/CA

โ‡’ CA2 = CB.CD.

Hence, proved.

14. Sides AB and AC and median AD of a triangle ABC are respectively proportional to sides PQ and PR and median PM of another triangle PQR. Show that ฮ”ABC ~ ฮ”PQR.

Solution:

Given: Two triangles ฮ”ABC and ฮ”PQR in which AD and PM are medians such that;

AB/PQ = AC/PR = AD/PM

We have to prove, ฮ”ABC ~ ฮ”PQR

Let us construct first: Produce AD to E so that AD = DE. Join CE, Similarly produce PM to N such that PM = MN, also Join RN.

Ncert solutions class 10 chapter 6-25

In ฮ”ABD and ฮ”CDE, we have

AD = DE  [By Construction.]

BD = DC [Since, AP is the median]

and, โˆ ADB = โˆ CDE [Vertically opposite angles]

โˆด ฮ”ABD โ‰… ฮ”CDE [SAS criterion of congruence]

โ‡’ AB = CE [By CPCT] โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..(i)

Also, in ฮ”PQM and ฮ”MNR,

PM = MN [By Construction.]

QM = MR [Since, PM is the median]

and, โˆ PMQ = โˆ NMR [Vertically opposite angles]

โˆด ฮ”PQM = ฮ”MNR [SAS criterion of congruence]

โ‡’ PQ = RN [CPCT] โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(ii)

Now, AB/PQ = AC/PR = AD/PM

From equation (i) and (ii),

โ‡’CE/RN = AC/PR = AD/PM

โ‡’ CE/RN = AC/PR = 2AD/2PM

โ‡’ CE/RN = AC/PR = AE/PN [Since 2AD = AE and 2PM = PN]

โˆด ฮ”ACE ~ ฮ”PRN [SSS similarity criterion]

Therefore, โˆ 2 = โˆ 4

Similarly, โˆ 1 = โˆ 3

โˆด โˆ 1 + โˆ 2 = โˆ 3 + โˆ 4

โ‡’ โˆ A = โˆ P โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(iii)

Now, in ฮ”ABC and ฮ”PQR, we have

AB/PQ = AC/PR (Already given)

From equation (iii),

โˆ A = โˆ P

โˆด ฮ”ABC ~ ฮ”PQR [ SAS similarity criterion]

15. A vertical pole of a length 6 m casts a shadow 4m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

Solution:

Given, Length of the vertical pole = 6m

Shadow of the pole = 4 m

Let Height of tower = h m

Length of shadow of the tower = 28 m

Ncert solutions class 10 chapter 6-26

In ฮ”ABC and ฮ”DEF,

โˆ C = โˆ E (angular elevation of sum)

โˆ B = โˆ F = 90ยฐ

โˆด ฮ”ABC ~ ฮ”DEF (AA similarity criterion)

โˆด AB/DF = BC/EF (If two triangles are similar corresponding sides are proportional)

โˆด 6/h = 4/28

โ‡’h = (6ร—28)/4

โ‡’ h = 6 ร— 7

โ‡’ = 42 m

Hence, the height of the tower is 42 m.

16. If AD and PM are medians of triangles ABC and PQR, respectively where ฮ”ABC ~ ฮ”PQR prove that AB/PQ = AD/PM.

Solution:

Given, ฮ”ABC ~ ฮ”PQR

Ncert solutions class 10 chapter 6-27

We know that the corresponding sides of similar triangles are in proportion.

โˆดAB/PQ = AC/PR = BC/QRโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(i)

Also, โˆ A = โˆ P, โˆ B = โˆ Q, โˆ C = โˆ R โ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆ..(ii)

Since AD and PM are medians, they will divide their opposite sides.

โˆด BD = BC/2 and QM = QR/2 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆโ€ฆโ€ฆ.(iii)

From equations (i) and (iii), we get

AB/PQ = BD/QM โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(iv)

In ฮ”ABD and ฮ”PQM,

From equation (ii), we have

โˆ B = โˆ Q

From equation (iv), we have,

AB/PQ = BD/QM

โˆด ฮ”ABD ~ ฮ”PQM (SAS similarity criterion)

โ‡’AB/PQ = BD/QM = AD/PM

Exercise 6.4 Page: 143

1. Let ฮ”ABC ~ ฮ”DEF and their areas be, respectively, 64 cm2 and 121 cm2. If EF = 15.4 cm, find BC.

Solution: Given, ฮ”ABC ~ ฮ”DEF,

Area of ฮ”ABC = 64 cm2

Area of ฮ”DEF = 121 cm2

EF = 15.4 cm

Ncert solutions class 10 chapter 6-28

As we know, if two triangles are similar, ratio of their areas are equal to the square of the ratio of their corresponding sides,

= AC2/DF2 = BC2/EF2

โˆด 64/121 = BC2/EF2

โ‡’ (8/11)2 = (BC/15.4)2

โ‡’ 8/11 = BC/15.4

โ‡’ BC = 8ร—15.4/11

โ‡’ BC = 8 ร— 1.4

โ‡’ BC = 11.2 cm

2. Diagonals of a trapezium ABCD with AB || DC intersect each other at the point O. If AB = 2CD, find the ratio of the areas of triangles AOB and COD.

Solution:

Given, ABCD is a trapezium with AB || DC. Diagonals AC and BD intersect each other at point O.

Ncert solutions class 10 chapter 6-29

In ฮ”AOB and ฮ”COD, we have

โˆ 1 = โˆ 2 (Alternate angles)

โˆ 3 = โˆ 4 (Alternate angles)

โˆ 5 = โˆ 6 (Vertically opposite angle)

โˆด ฮ”AOB ~ ฮ”COD [AAA similarity criterion]

As we know, If two triangles are similar then the ratio of their areas are equal to the square of the ratio of their corresponding sides. Therefore,

Area of (ฮ”AOB)/Area of (ฮ”COD) = AB2/CD2

= (2CD)2/CD2 [โˆด AB = 2CD]

โˆด Area of (ฮ”AOB)/Area of (ฮ”COD)

= 4CD2/CD2 = 4/1

Hence, the required ratio of the area of ฮ”AOB and ฮ”COD = 4:1

3. In the figure, ABC and DBC are two triangles on the same base BC. If AD intersects BC at O, show that area (ฮ”ABC)/area (ฮ”DBC) = AO/DO.

Ncert solutions class 10 chapter 6-30

Solution:

Given, ABC and DBC are two triangles on the same base BC. AD intersects BC at O.

We have to prove: Area (ฮ”ABC)/Area (ฮ”DBC) = AO/DO

Let us draw two perpendiculars AP and DM on line BC.

Ncert solutions class 10 chapter 6-31

We know that area of a triangle = 1/2 ร— Base ร— Height

https://4.bp.blogspot.com/-9ywR15fTTyI/VUiJqLSptdI/AAAAAAAAFYk/1Y11QBtVU68/s1600/equation-2.PNG

In ฮ”APO and ฮ”DMO,

โˆ APO = โˆ DMO (Each 90ยฐ)

โˆ AOP = โˆ DOM (Vertically opposite angles)

โˆด ฮ”APO ~ ฮ”DMO (AA similarity criterion)

โˆด AP/DM = AO/DO

โ‡’ Area (ฮ”ABC)/Area (ฮ”DBC) = AO/DO.

4. If the areas of two similar triangles are equal, prove that they are congruent.

Solution:

Say ฮ”ABC and ฮ”PQR are two similar triangles and equal in area

Ncert solutions class 10 chapter 6-33

Now let us prove ฮ”ABC โ‰… ฮ”PQR.

Since, ฮ”ABC ~ ฮ”PQR

โˆด Area of (ฮ”ABC)/Area of (ฮ”PQR) = BC2/QR2

โ‡’ BC2/QR2 =1 [Since, Area(ฮ”ABC) = (ฮ”PQR)

โ‡’ BC2/QR2

โ‡’ BC = QR

Similarly, we can prove that

AB = PQ and AC = PR

Thus, ฮ”ABC โ‰… ฮ”PQR [SSS criterion of congruence]

5. D, E and F are respectively the mid-points of sides AB, BC and CA of ฮ”ABC. Find the ratio of the area of ฮ”DEF and ฮ”ABC.

Solution:

Given, D, E and F are respectively the mid-points of sides AB, BC and CA of ฮ”ABC.

Ncert solutions class 10 chapter 6-34

In ฮ”ABC,

F is the mid-point of AB (Already given)

E is the mid-point of AC (Already given)

So, by the mid-point theorem, we have,

FE || BC and FE = 1/2BC

โ‡’ FE || BC and FE || BD [BD = 1/2BC]

Since, opposite sides of parallelogram are equal and parallel

โˆด BDEF is parallelogram.

Similarly, in ฮ”FBD and ฮ”DEF, we have

FB = DE (Opposite sides of parallelogram BDEF)

FD = FD (Common sides)

BD = FE (Opposite sides of parallelogram BDEF)

โˆด ฮ”FBD โ‰… ฮ”DEF

Similarly, we can prove that

ฮ”AFE โ‰… ฮ”DEF

ฮ”EDC โ‰… ฮ”DEF

As we know, if triangles are congruent, then they are equal in area.

So,

Area(ฮ”FBD) = Area(ฮ”DEF) โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(i)

Area(ฮ”AFE) = Area(ฮ”DEF) โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(ii)

and,

Area(ฮ”EDC) = Area(ฮ”DEF) โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(iii)

Now,

Area(ฮ”ABC) = Area(ฮ”FBD) + Area(ฮ”DEF) + Area(ฮ”AFE) + Area(ฮ”EDC) โ€ฆโ€ฆโ€ฆ(iv)

Area(ฮ”ABC) = Area(ฮ”DEF) + Area(ฮ”DEF) + Area(ฮ”DEF) + Area(ฮ”DEF)

From equation (i)(ii) and (iii),

โ‡’ Area(ฮ”DEF) = (1/4)Area(ฮ”ABC)

โ‡’ Area(ฮ”DEF)/Area(ฮ”ABC) = 1/4

Hence, Area(ฮ”DEF): Area(ฮ”ABC) = 1:4

6. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

Solution:

Given: AM and DN are the medians of triangles ABC and DEF respectively and ฮ”ABC ~ ฮ”DEF.

Ncert solutions class 10 chapter 6-35

We have to prove: Area(ฮ”ABC)/Area(ฮ”DEF) = AM2/DN2

Since, ฮ”ABC ~ ฮ”DEF (Given)

โˆด Area(ฮ”ABC)/Area(ฮ”DEF) = (AB2/DE2) โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(i)

and, AB/DE = BC/EF = CA/FD โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(ii)

https://1.bp.blogspot.com/-ynQR15nRVwc/VUwp_lLVzpI/AAAAAAAAFZ0/hcsAT2o-iuE/s1600/equation-3.PNG

In ฮ”ABM and ฮ”DEN,

Since ฮ”ABC ~ ฮ”DEF

โˆด โˆ B = โˆ E

AB/DE = BM/EN [Already Proved in equation (i)]

โˆด ฮ”ABC ~ ฮ”DEF [SAS similarity criterion]

โ‡’ AB/DE = AM/DN โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..(iii)

โˆด ฮ”ABM ~ ฮ”DEN

As the areas of two similar triangles are proportional to the squares of the corresponding sides.

โˆด area(ฮ”ABC)/area(ฮ”DEF) = AB2/DE2 = AM2/DN2

Hence, proved.


7. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.

Solution:

Ncert solutions class 10 chapter 6-37Given, ABCD is a square whose one diagonal is AC. ฮ”APC and ฮ”BQC are two equilateral triangles described on the diagonals AC and side BC of the square ABCD.

Area(ฮ”BQC) = ยฝ Area(ฮ”APC)

Since, ฮ”APC and ฮ”BQC are both equilateral triangles, as per given,

โˆด ฮ”APC ~ ฮ”BQC [AAA similarity criterion]

โˆด area(ฮ”APC)/area(ฮ”BQC) = (AC2/BC2) = AC2/BC2

Since, Diagonal = โˆš2 side = โˆš2 BC = AC

Ncert solutions class 10 chapter 6-38

โ‡’ area(ฮ”APC) = 2 ร— area(ฮ”BQC)

โ‡’ area(ฮ”BQC) = 1/2area(ฮ”APC)

Hence, proved.

Tick the correct answer and justify:

8. ABC and BDE are two equilateral triangles such that D is the mid-point of BC. Ratio of the area of triangles ABC and BDE is
(A) 2 : 1
(B) 1 : 2
(C) 4 : 1
(D) 1 : 4

Solution:

Givenฮ”ABC and ฮ”BDE are two equilateral triangle. D is the midpoint of BC.

Triangles Exercise 6.4 Answer 8

โˆด BD = DC = 1/2BC

Let each side of triangle is 2a.

As, ฮ”ABC ~ ฮ”BDE

โˆด Area(ฮ”ABC)/Area(ฮ”BDE) = AB2/BD2 = (2a)2/(a)2 = 4a2/a2 = 4/1 = 4:1

Hence, the correct answer is (C).

9. Sides of two similar triangles are in the ratio 4 : 9. Areas of these triangles are in the ratio
(A) 2 : 3
(B) 4 : 9
(C) 81 : 16
(D) 16 : 81

Solution:

Given, Sides of two similar triangles are in the ratio 4 : 9.

Triangles Exercise 6.4 Answer 9

Let ABC and DEF are two similar triangles, such that,

ฮ”ABC ~ ฮ”DEF

And AB/DE = AC/DF = BC/EF = 4/9

As, the ratio of the areas of these triangles will be equal to the square of the ratio of the corresponding sides,

โˆด Area(ฮ”ABC)/Area(ฮ”DEF) = AB2/DE

โˆด Area(ฮ”ABC)/Area(ฮ”DEF) = (4/9)= 16/81 = 16:81

Hence, the correct answer is (D).


Exercise 6.5 Page: 150

1.  Sides of triangles are given below. Determine which of them are right triangles? In case of a right triangle, write the length of its hypotenuse.

(i) 7 cm, 24 cm, 25 cm
(ii) 3 cm, 8 cm, 6 cm
(iii) 50 cm, 80 cm, 100 cm
(iv) 13 cm, 12 cm, 5 cm

Solution:

(i) Given, sides of the triangle are 7 cm, 24 cm, and 25 cm.

Squaring the lengths of the sides of the, we will get 49, 576, and 625.

49 + 576 = 625

(7)2 + (24)2 = (25)2

Therefore, the above equation satisfies, Pythagoras theorem. Hence, it is right angled triangle.

Length of Hypotenuse = 25 cm

(ii) Given, sides of the triangle are 3 cm, 8 cm, and 6 cm.

Squaring the lengths of these sides, we will get 9, 64, and 36.

Clearly, 9 + 36 โ‰  64

Or, 32 + 62 โ‰  82

Therefore, the sum of the squares of the lengths of two sides is not equal to the square of the length of the hypotenuse.

Hence, the given triangle does not satisfies Pythagoras theorem.

(iii) Given, sides of triangleโ€™s are 50 cm, 80 cm, and 100 cm.

Squaring the lengths of these sides, we will get 2500, 6400, and 10000.

However, 2500 + 6400 โ‰  10000

Or, 502 + 802 โ‰  1002

As you can see, the sum of the squares of the lengths of two sides is not equal to the square of the length of the third side.

Therefore, the given triangle does not satisfies Pythagoras theorem.

Hence, it is not a right triangle.

(iv) Given, sides are 13 cm, 12 cm, and 5 cm.

Squaring the lengths of these sides, we will get 169, 144, and 25.

Thus, 144 +25 = 169

Or, 122 + 52 = 132

The sides of the given triangle are satisfying Pythagoras theorem.

Therefore, it is a right triangle.

Hence, length of the hypotenuse of this triangle is 13 cm.

2. PQR is a triangle right angled at P and M is a point on QR such that PM โŠฅ QR. Show that PM2 = QM ร— MR.

Solution:

Given, ฮ”PQR is right angled at P is a point on QR such that PM โŠฅQR

https://3.bp.blogspot.com/-niqPczc0V0k/VUxc45H8iGI/AAAAAAAAFa0/1AGiUafEXZw/s1600/fig-21.PNG

We have to prove, PM2 = QM ร— MR

In ฮ”PQM, by Pythagoras theorem

PQ2 = PM2 + QM2

Or, PM2 = PQ2 โ€“ QM2 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..(i)

In ฮ”PMR, by Pythagoras theorem

PR2 = PM2 + MR2

Or, PM2 = PR2 โ€“ MR2 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..(ii)

Adding equation, (i) and (ii), we get,

2PM2 = (PQ2 + PM2) โ€“ (QM2 + MR2)

= QR2 โ€“ QM2 โ€“ MR2        [โˆด QR2 = PQ2 + PR2]

= (QM + MR)2 โ€“ QM2 โ€“ MR2

= 2QM ร— MR

โˆด PM2 = QM ร— MR

3. In Figure, ABD is a triangle right angled at A and AC โŠฅ BD. Show that
(i) AB2 = BC ร— BD
(ii) AC2 = BC ร— DC
(iii) AD2 = BD ร— CD

Ncert solutions class 10 chapter 6-42

Solution:

(i) In ฮ”ADB and ฮ”CAB,

โˆ DAB = โˆ ACB (Each 90ยฐ)

โˆ ABD = โˆ CBA (Common angles)

โˆด ฮ”ADB ~ ฮ”CAB [AA similarity criterion]

โ‡’ AB/CB = BD/AB

โ‡’ AB2 = CB ร— BD

(ii) Let โˆ CAB = x

In ฮ”CBA,

โˆ CBA = 180ยฐ โ€“ 90ยฐ โ€“ x

โˆ CBA = 90ยฐ โ€“ x

Similarly, in ฮ”CAD

โˆ CAD = 90ยฐ โ€“ โˆ CBA

= 90ยฐ โ€“ x

โˆ CDA = 180ยฐ โ€“ 90ยฐ โ€“ (90ยฐ โ€“ x)

โˆ CDA = x

In ฮ”CBA and ฮ”CAD, we have

โˆ CBA = โˆ CAD

โˆ CAB = โˆ CDA

โˆ ACB = โˆ DCA (Each 90ยฐ)

โˆด ฮ”CBA ~ ฮ”CAD [AAA similarity criterion]

โ‡’ AC/DC = BC/AC

โ‡’ AC2 =  DC ร— BC

(iii) In ฮ”DCA and ฮ”DAB,

โˆ DCA = โˆ DAB (Each 90ยฐ)

โˆ CDA = โˆ ADB (common angles)

โˆด ฮ”DCA ~ ฮ”DAB [AA similarity criterion]

โ‡’ DC/DA = DA/DA

โ‡’ AD2 = BD ร— CD

4. ABC is an isosceles triangle right angled at C. Prove that AB2 = 2AC2 .

Solution:

Given, ฮ”ABC is an isosceles triangle right angled at C.

Triangles Exercise 6.5 Answer 4

In ฮ”ACB, โˆ C = 90ยฐ

AC = BC (By isosceles triangle property)

AB2 = AC2 + BC2 [By Pythagoras theorem]

= AC2 + AC2 [Since, AC = BC]

AB2 = 2AC2

5. ABC is an isosceles triangle with AC = BC. If AB2 = 2AC2, prove that ABC is a right triangle.

Solution:

Given, ฮ”ABC is an isosceles triangle having AC = BC and AB2 = 2AC2

Triangles Exercise 6.5 Answer 5

In ฮ”ACB,

AC = BC

AB2 = 2AC2

AB2 = AC+ AC2

= AC2 + BC[Since, AC = BC]

Hence, by Pythagoras theorem ฮ”ABC is right angle triangle.

6. ABC is an equilateral triangle of side 2a. Find each of its altitudes.

Solution:

Given, ABC is an equilateral triangle of side 2a.

Triangles Exercise 6.5 Answer 6

Draw, AD โŠฅ BC

In ฮ”ADB and ฮ”ADC,

AB = AC

AD = AD

โˆ ADB = โˆ ADC [Both are 90ยฐ]

Therefore, ฮ”ADB โ‰… ฮ”ADC by RHS congruence.

Hence, BD = DC [by CPCT]

In right angled ฮ”ADB,

AB2 = AD+ BD2

(2a)2 = ADa

โ‡’ AD2 = 4a2 โ€“ a2

โ‡’ AD2 = 3a2

โ‡’ AD = โˆš3a

7. Prove that the sum of the squares of the sides of rhombus is equal to the sum of the squares of its diagonals.

Solution:

Given, ABCD is a rhombus whose diagonals AC and BD intersect at O.

Triangles Exercise 6.5 Answer 7

We have to prove, as per the question,

AB+ BC+ CD2 + AD= AC+ BD2

Since, the diagonals of a rhombus bisect each other at right angles.

Therefore, AO = CO and BO = DO

In ฮ”AOB,

โˆ AOB = 90ยฐ

AB2 = AO+ BOโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (i) [By Pythagoras theorem]

Similarly,

AD2 = AO+ DOโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (ii)

DC2 = DO+ COโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (iii)

BC2 = CO+ BOโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (iv)

Adding equations (i) + (ii) + (iii) + (iv), we get,

AB+ AD+ DC+ BC2 = 2(AO+ BO+ DO+ CO2)

= 4AO+ 4BO[Since, AO = CO and BO =DO]

= (2AO)+ (2BO)2 = AC+ BD2

AB+ AD+ DC+ BC2 = AC+ BD2

Hence, proved.

8. In Fig. 6.54, O is a point in the interior of a triangle.

Ncert solutions class 10 chapter 6-47

ABC, OD โŠฅ BC, OE โŠฅ AC and OF โŠฅ AB. Show that:
(i) OA2 + OB2 + OC2 โ€“ OD2 โ€“ OE2 โ€“ OF2 = AF2 + BD2 + CE2 ,
(ii) AF2 + BD2 + CE2 = AE2 + CD2 + BF2.

Solution:

Given, in ฮ”ABC, O is a point in the interior of a triangle.

And OD โŠฅ BC, OE โŠฅ AC and OF โŠฅ AB.

Join OA, OB and OC

Triangles Exercise 6.5 Answer 8

(i) By Pythagoras theorem in ฮ”AOF, we have

OA2 = OF2 + AF2

Similarly, in ฮ”BOD

OB2 = OD2 + BD2

Similarly, in ฮ”COE

OC2 = OE2 + EC2

Adding these equations,

OA2 + OB2 + OC2 = OF2 + AF2 + OD2 + BD2 + OE+ EC2

OA2 + OB2 + OC2 โ€“ OD2 โ€“ OE2 โ€“ OF2 = AF2 + BD2 + CE2.

(ii) AF2 + BD2 + EC2 = (OA2 โ€“ OE2) + (OC2 โ€“ OD2) + (OB2 โ€“ OF2)

โˆด AF2 + BD2 + CE2 = AE2 + CD2 + BF2.

9. A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from base of the wall.

Solution:

Given, a ladder 10 m long reaches a window 8 m above the ground.

Triangles Exercise 6.5 Answer 9

Let BA be the wall and AC be the ladder,

Therefore, by Pythagoras theorem,

AC2 = AB2 + BC2

102 = 82 + BC2

BC= 100 โ€“ 64

BC= 36

BC = 6m

Therefore, the distance of the foot of the ladder from the base of the wall is 6 m.

10. A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?

Solution:

Given, a guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end.

Triangles Exercise 6.5 Answer 10

Let AB be the pole and AC be the wire.

By Pythagoras theorem,

AC2 = AB2 + BC2

242 = 182 + BC2

BC= 576 โ€“ 324

BC= 252

BC = 6โˆš7m

Therefore, the distance from the base is 6โˆš7m.

11. An aeroplane leaves an airport and flies due north at a speed of 1,000 km per hour. At the same time, another aeroplane leaves the same airport and flies due west at a speed of 1,200 km per hour. How far apart will be the two planes after
Ncert solutions class 10 chapter 6-51  hours?

Solution:

Given,

Speed of first aeroplane = 1000 km/hr

Distance covered by first aeroplane flying due north in
Ncert solutions class 10 chapter 6-52  hours (OA) = 100 ร— 3/2 km = 1500 km

Speed of second aeroplane = 1200 km/hr

Distance covered by second aeroplane flying due west in
Ncert solutions class 10 chapter 6-53  hours (OB) = 1200 ร— 3/2 km = 1800 km

Triangles Exercise 6.5 Answer 11

In right angle ฮ”AOB, by Pythagoras Theorem,

AB2 = AO2 + OB2

โ‡’ AB2 = (1500)2 + (1800)2

โ‡’ AB = โˆš(2250000 + 3240000)

= โˆš5490000

โ‡’ AB = 300โˆš61 km

Hence, the distance between two aeroplanes will be 300โˆš61 km.

12. Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between the feet of the poles is 12 m, find the distance between their tops.

Solution:

Given, Two poles of heights 6 m and 11 m stand on a plane ground.

And distance between the feet of the poles is 12 m.

Triangles Exercise 6.5 Answer 12

Let AB and CD be the poles of height 6m and 11m.

Therefore, CP = 11 โ€“ 6 = 5m

From the figure, it can be observed that AP = 12m

By Pythagoras theorem for ฮ”APC, we get,

AP2 = PC2 + AC2

(12m)2 + (5m)2 = (AC)2

AC2 = (144+25) m2 = 169 m2

AC = 13m

Therefore, the distance between their tops is 13 m.

13. D and E are points on the sides CA and CB respectively of a triangle ABC right angled at C. Prove that AE2 + BD2 = AB2 + DE2.

Solution:

Given, D and E are points on the sides CA and CB respectively of a triangle ABC right angled at C.

Triangles Exercise 6.5 Answer 13

By Pythagoras theorem in ฮ”ACE, we get

AC2 + CE2 = AE2 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(i)

In ฮ”BCD, by Pythagoras theorem, we get

BC2 + CD2 = BD2 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..(ii)

From equations (i) and (ii), we get,

AC2 + CE2 + BC2 + CD2 = AE2 + BD2 โ€ฆโ€ฆโ€ฆโ€ฆ..(iii)

In ฮ”CDE, by Pythagoras theorem, we get

DE2 = CD2 + CE2

In ฮ”ABC, by Pythagoras theorem, we get

AB2 = AC2 + CB2

Putting the above two values in equation (iii), we get

DE2 + AB2 = AE2 + BD2.

14. The perpendicular from A on side BC of a ฮ” ABC intersects BC at D such that DB = 3CD (see Figure). Prove that 2AB2 = 2AC2 + BC2.

Ncert solutions class 10 chapter 6-57

Solution:

Given, the perpendicular from A on side BC of a ฮ” ABC intersects BC at D such that;

DB = 3CD.

In ฮ” ABC,

AD โŠฅBC and BD = 3CD

In right angle triangle, ADB and ADC, by Pythagoras theorem,

AB2 = AD2 + BD2 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(i)

AC2 = AD2 + DC2 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..(ii)

Subtracting equation (ii) from equation (i), we get

AB2 โ€“ AC2 = BD2 โ€“ DC2

= 9CD2 โ€“ CD2 [Since, BD = 3CD]

= 8CD2

= 8(BC/4)[Since, BC = DB + CD = 3CD + CD = 4CD]

Therefore, AB2 โ€“ AC2 = BC2/2

โ‡’ 2(AB2 โ€“ AC2) = BC2

โ‡’ 2AB2 โ€“ 2AC2 = BC2

โˆด 2AB2 = 2AC2 + BC2.

15.  In an equilateral triangle ABC, D is a point on side BC such that BD = 1/3BC. Prove that 9AD2 = 7AB2.

Solution:

Given, ABC is an equilateral triangle.

And D is a point on side BC such that BD = 1/3BC

Triangles Exercise 6.5 Answer 15

Let the side of the equilateral triangle be a, and AE be the altitude of ฮ”ABC.

โˆด BE = EC = BC/2 = a/2

And, AE = aโˆš3/2

Given, BD = 1/3BC

โˆด BD = a/3

DE = BE โ€“ BD = a/2 โ€“ a/3 = a/6

In ฮ”ADE, by Pythagoras theorem,

AD2 = AE2 + DE

https://3.bp.blogspot.com/-GOGZB536EAw/VU7p43c1KbI/AAAAAAAAFe4/d1fu3QYmaRc/s1600/equation-5.PNG

โ‡’ 9 AD2 = 7 AB2


16. In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.

Solution:

Given, an equilateral triangle say ABC,

Triangles Exercise 6.5 Answer 16

Let the sides of the equilateral triangle be of length a, and AE be the altitude of ฮ”ABC.

โˆด BE = EC = BC/2 = a/2

In ฮ”ABE, by Pythagoras Theorem, we get

AB2 = AE2 + BE2

https://1.bp.blogspot.com/-9R825aQHYTo/VU7xTBhBVII/AAAAAAAAFfU/CQ6kaVAl580/s1600/equation-6.PNG

4AE2 = 3a2

โ‡’ 4 ร— (Square of altitude) = 3 ร— (Square of one side)

Hence, proved.

17. Tick the correct answer and justify: In ฮ”ABC, AB = 6โˆš3 cm, AC = 12 cm and BC = 6 cm.
The angle B is:
(A) 120ยฐ

(B) 60ยฐ
(C) 90ยฐ 

(D) 45ยฐ

Solution:

Given, in ฮ”ABC, AB = 6โˆš3 cm, AC = 12 cm and BC = 6 cm.

Triangles Exercise 6.5 Answer 17

We can observe that,

AB2 = 108

AC2 = 144

And, BC2 = 36

AB2 + BC2 = AC2

The given triangle, ฮ”ABC, is satisfying Pythagoras theorem.

Therefore, the triangle is a right triangle, right-angled at B.

โˆด โˆ B = 90ยฐ

Hence, the correct answer is (C).


Exercise 6.6 Page: 152

1. In Figure, PS is the bisector of โˆ  QPR of โˆ† PQR. Prove that QS/PQ = SR/PR

Ncert solutions class 10 chapter 6-63

Solution:

Let us draw a line segment RT parallel to SP which intersects extended line segment QP at point T.

Given, PS is the angle bisector of โˆ QPR. Therefore,

โˆ QPS = โˆ SPRโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..(i)

Ncert solutions class 10 chapter 6-64

As per the constructed figure,

โˆ SPR=โˆ PRT(Since, PS||TR)โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(ii)

โˆ QPS = โˆ QRT(Since, PS||TR) โ€ฆโ€ฆโ€ฆโ€ฆ..(iii)

From the above equations, we get,

โˆ PRT=โˆ QTR

Therefore,

PT=PR

In โ–ณQTR, by basic proportionality theorem,

QS/SR = QP/PT

Since, PT=TR

Therefore,

QS/SR = PQ/PR

Hence, proved.

2. In Fig. 6.57, D is a point on hypotenuse AC of โˆ†ABC, such that BD โŠฅAC, DM โŠฅ BC and DN โŠฅ AB. Prove that: (i) DM2 = DN . MC (ii) DN2 = DM . AN.
Ncert solutions class 10 chapter 6-65

Solution:

  1. Let us join Point D and B.
Ncert solutions class 10 chapter 6-66

Given,

BD โŠฅAC, DM โŠฅ BC and DN โŠฅ AB

Now from the figure we have,

DN || CB, DM || AB and โˆ B = 90 ยฐ

Therefore, DMBN is a rectangle.

So, DN = MB and DM = NB

The given condition which we have to prove, is when D is the foot of the perpendicular drawn from B to AC.

โˆด โˆ CDB = 90ยฐ โ‡’ โˆ 2 + โˆ 3 = 90ยฐ โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ. (i)

In โˆ†CDM, โˆ 1 + โˆ 2 + โˆ DMC = 180ยฐ

โ‡’ โˆ 1 + โˆ 2 = 90ยฐ โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (ii)

In โˆ†DMB, โˆ 3 + โˆ DMB + โˆ 4 = 180ยฐ

โ‡’ โˆ 3 + โˆ 4 = 90ยฐ โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (iii)

From equation (i) and (ii), we get

โˆ 1 = โˆ 3

From equation (i) and (iii), we get

โˆ 2 = โˆ 4

In โˆ†DCM and โˆ†BDM,

โˆ 1 = โˆ 3 (Already Proved)

โˆ 2 = โˆ 4 (Already Proved)

โˆด โˆ†DCM โˆผ โˆ†BDM (AA similarity criterion)

BM/DM = DM/MC

DN/DM = DM/MC (BM = DN)

โ‡’ DM2 = DN ร— MC

Hence, proved.

(ii) In right triangle DBN,

โˆ 5 + โˆ 7 = 90ยฐ โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (iv)

In right triangle DAN,

โˆ 6 + โˆ 8 = 90ยฐ โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (v)

D is the point in triangle, which is foot of the perpendicular drawn from B to AC.

โˆด โˆ ADB = 90ยฐ โ‡’ โˆ 5 + โˆ 6 = 90ยฐ โ€ฆโ€ฆโ€ฆโ€ฆ.. (vi)

From equation (iv) and (vi), we get,

โˆ 6 = โˆ 7

From equation (v) and (vi), we get,

โˆ 8 = โˆ 5

In โˆ†DNA and โˆ†BND,

โˆ 6 = โˆ 7 (Already proved)

โˆ 8 = โˆ 5 (Already proved)

โˆด โˆ†DNA โˆผ โˆ†BND (AA similarity criterion)

AN/DN = DN/NB

โ‡’ DN2 = AN ร— NB

โ‡’ DN2 = AN ร— DM (Since, NB = DM)

Hence, proved.

3. In Figure, ABC is a triangle in which โˆ ABC > 90ยฐ and AD โŠฅ CB produced. Prove that

AC2= AB2+ BC2+ 2 BC.BD.

Ncert solutions class 10 chapter 6-67

Solution:

By applying Pythagoras Theorem in โˆ†ADB, we get,

AB2 = AD2 + DB2 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (i)

Again, by applying Pythagoras Theorem in โˆ†ACD, we get,

AC2 = AD2 + DC2

AC2 = AD2 + (DB + BC) 2

AC2 = AD2 + DB2 + BC2 + 2DB ร— BC

From equation (i), we can write,

AC2 = AB2 + BC2 + 2DB ร— BC

Hence, proved.

4. In Figure, ABC is a triangle in which โˆ  ABC < 90ยฐ and AD โŠฅ BC. Prove that

AC2= AB2+ BC2 โ€“ 2 BC.BD.

Ncert solutions class 10 chapter 6-68

Solution:

By applying Pythagoras Theorem in โˆ†ADB, we get,

AB2 = AD2 + DB2

We can write it as;

โ‡’ AD2 = AB2 โˆ’ DB2 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (i)

By applying Pythagoras Theorem in โˆ†ADC, we get,

AD2 + DC2 = AC2

From equation (i),

AB2 โˆ’ BD2 + DC2 = AC2

AB2 โˆ’ BD2 + (BC โˆ’ BD) 2 = AC2

AC2 = AB2 โˆ’ BD2 + BC2 + BD2 โˆ’2BC ร— BD

AC= AB2 + BC2 โˆ’ 2BC ร— BD

Hence, proved.

5. In Figure, AD is a median of a triangle ABC and AM โŠฅ BC. Prove that :

(i) AC2 = AD2 + BC.DM + 2 (BC/2) 2

(ii) AB2 = AD2 โ€“ BC.DM + 2 (BC/2) 2

(iii) AC2 + AB2 = 2 AD2 + ยฝ BC2

Ncert solutions class 10 chapter 6-69

Solution:

(i) By applying Pythagoras Theorem in โˆ†AMD, we get,

AM2 + MD2 = AD2 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ. (i)

Again, by applying Pythagoras Theorem in โˆ†AMC, we get,

AM2 + MC2 = AC2

AM2 + (MD + DC) 2 = AC2

(AM2 + MD2 ) + DC2 + 2MD.DC = AC2

From equation(i), we get,

AD2 + DC2 + 2MD.DC = AC2

Since, DC=BC/2, thus, we get,

AD+ (BC/2) 2 + 2MD.(BC/2) 2 = AC2

AD+ (BC/2) 2 + 2MD ร— BC = AC2

Hence, proved.

(ii) By applying Pythagoras Theorem in โˆ†ABM, we get;

AB2 = AM2 + MB2

= (AD2 โˆ’ DM2) + MB2

= (AD2 โˆ’ DM2) + (BD โˆ’ MD) 2

= AD2 โˆ’ DM2 + BD2 + MD2 โˆ’ 2BD ร— MD

= AD2 + BD2 โˆ’ 2BD ร— MD

= AD+ (BC/2)โ€“ 2(BC/2) MD

= AD+ (BC/2)โ€“ BC MD

Hence, proved.

(iii) By applying Pythagoras Theorem in โˆ†ABM, we get,

AM2 + MB2 = AB2 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆ (i)

By applying Pythagoras Theorem in โˆ†AMC, we get,

AM2 + MC2 = AC2 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆ (ii)

Adding both the equations (i) and (ii), we get,

2AM2 + MB2 + MC2 = AB2 + AC2

2AM2 + (BD โˆ’ DM) 2 + (MD + DC) 2 = AB2 + AC2

2AM2+BD2 + DM2 โˆ’ 2BD.DM + MD2 + DC2 + 2MD.DC = AB2 + AC2

2AM2 + 2MD2 + BD2 + DC2 + 2MD (โˆ’ BD + DC) = AB2 + AC2

2(AM2+ MD2) + (BC/2) 2 + (BC/2) 2 + 2MD (-BC/2 + BC/2) 2 = AB2 + AC2

2AD+ BC2/2 = AB2 + AC2

6. Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.

Solution:

Let us consider, ABCD be a parallelogram. Now, draw perpendicular DE on extended side of AB, and draw a perpendicular AF meeting DC at point F.

Ncert solutions class 10 chapter 6-70

By applying Pythagoras Theorem in โˆ†DEA, we get,

DE2 + EA2 = DA2 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆ (i)

By applying Pythagoras Theorem in โˆ†DEB, we get,

DE2 + EB2 = DB2

DE2 + (EA + AB) 2 = DB2

(DE2 + EA2) + AB2 + 2EA ร— AB = DB2

DA2 + AB2 + 2EA ร— AB = DB2 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ. (ii)

By applying Pythagoras Theorem in โˆ†ADF, we get,

AD2 = AF2 + FD2

Again, applying Pythagoras theorem in โˆ†AFC, we get,

AC2 = AF2 + FC2 = AF2 + (DC โˆ’ FD) 2

= AF2 + DC2 + FD2 โˆ’ 2DC ร— FD

= (AF2 + FD2) + DC2 โˆ’ 2DC ร— FD AC2

AC2= AD2 + DC2 โˆ’ 2DC ร— FD โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (iii)

Since ABCD is a parallelogram,

AB = CD โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆ(iv)

And BC = AD โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ. (v)

In โˆ†DEA and โˆ†ADF,

โˆ DEA = โˆ AFD (Each 90ยฐ)

โˆ EAD = โˆ ADF (EA || DF)

AD = AD (Common Angles)

โˆด โˆ†EAD โ‰… โˆ†FDA (AAS congruence criterion)

โ‡’ EA = DF โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (vi)

Adding equations (i) and (iii), we get,

DA2 + AB2 + 2EA ร— AB + AD2 + DC2 โˆ’ 2DC ร— FD = DB2 + AC2

DA2 + AB2 + AD2 + DC2 + 2EA ร— AB โˆ’ 2DC ร— FD = DB2 + AC2

From equation (iv) and (vi),

BC2 + AB2 + AD2 + DC2 + 2EA ร— AB โˆ’ 2AB ร— EA = DB2 + AC2

AB2 + BC2 + CD2 + DA2 = AC2 + BD2

7. In Figure, two chords AB and CD intersect each other at the point P. Prove that :

(i) โˆ†APC ~ โˆ† DPB

(ii) AP . PB = CP . DP

Ncert solutions class 10 chapter 6-71

Solution:

Firstly, let us join CB, in the given figure.

(i) In โˆ†APC and โˆ†DPB,

โˆ APC = โˆ DPB (Vertically opposite angles)

โˆ CAP = โˆ BDP (Angles in the same segment for chord CB)

Therefore,

โˆ†APC โˆผ โˆ†DPB (AA similarity criterion)

(ii) In the above, we have proved that โˆ†APC โˆผ โˆ†DPB

We know that the corresponding sides of similar triangles are proportional.

โˆด AP/DP = PC/PB = CA/BD

โ‡’AP/DP = PC/PB

โˆดAP. PB = PC. DP

Hence, proved.

8. In Fig. 6.62, two chords AB and CD of a circle intersect each other at the point P (when produced) outside the circle. Prove that:

(i) โˆ† PAC ~ โˆ† PDB

(ii) PA . PB = PC . PD.

Ncert solutions class 10 chapter 6-72

Solution:

(i) In โˆ†PAC and โˆ†PDB,

โˆ P = โˆ P (Common Angles)

As we know, exterior angle of a cyclic quadrilateral is โˆ PCA and โˆ PBD is opposite interior angle, which are both equal.

โˆ PAC = โˆ PDB

Thus, โˆ†PAC โˆผ โˆ†PDB(AA similarity criterion)

(ii) We have already proved above,

โˆ†APC โˆผ โˆ†DPB

We know that the corresponding sides of similar triangles are proportional.

Therefore,

AP/DP = PC/PB = CA/BD

AP/DP = PC/PB

โˆด AP. PB = PC. DP

9. In Figure, D is a point on side BC of โˆ† ABC such that BD/CD = AB/AC. Prove that AD is the bisector of โˆ  BAC.

Ncert solutions class 10 chapter 6-73

Solution:

In the given figure, let us extend BA to P such that;

AP = AC.

Now join PC.

Ncert solutions class 10 chapter 6-74

Given, BD/CD = AB/AC

โ‡’ BD/CD = AP/AC

By using the converse of basic proportionality theorem, we get,

AD || PC

โˆ BAD = โˆ APC (Corresponding angles) โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (i)

And, โˆ DAC = โˆ ACP (Alternate interior angles) โ€ฆโ€ฆ.โ€ฆ (ii)

By the new figure, we have;

AP = AC

โ‡’ โˆ APC = โˆ ACP โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ. (iii)

On comparing equations (i), (ii), and (iii), we get,

โˆ BAD = โˆ APC

Therefore, AD is the bisector of the angle BAC.

Hence, proved.

10. Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that her string (from the tip of her rod to the fly) is taut, how much string does she have out (see Figure)? If she pulls in the string at the rate of 5 cm per second, what will be the horizontal distance of the fly from her after 12 seconds?

Ncert solutions class 10 chapter 6-75

Solution:

Let us consider, AB is the height of the tip of the fishing rod from the water surface and BC is the

horizontal distance of the fly from the tip of the fishing rod. Therefore, AC is now the length of the string.

Ncert solutions class 10 chapter 6-76

To find AC, we have to use Pythagoras theorem in โˆ†ABC, is such way;

AC2 = AB2+ BC2

AB= (1.8 m) 2 + (2.4 m) 2

AB= (3.24 + 5.76) m2

AB2 = 9.00 m2

โŸน AB = โˆš9 m = 3m

Thus, the length of the string out is 3 m.

As its given, she pulls the string at the rate of 5 cm per second.

Therefore, string pulled in 12 seconds = 12 ร— 5 = 60 cm = 0.6 m

Ncert solutions class 10 chapter 6-77

Let us say now, the fly is at point D after 12 seconds.

Length of string out after 12 seconds is AD.

AD = AC โˆ’ String pulled by Nazima in 12 seconds

= (3.00 โˆ’ 0.6) m

= 2.4 m

In โˆ†ADB, by Pythagoras Theorem,

AB2 + BD2 = AD2

(1.8 m) 2 + BD2 = (2.4 m) 2

BD2 = (5.76 โˆ’ 3.24) m2 = 2.52 m2

BD = 1.587 m

Horizontal distance of fly = BD + 1.2 m

= (1.587 + 1.2) m = 2.787 m

= 2.79 m


NCERT Solutions for Class 10 Maths Chapter 6- Triangles

NCERT Solutions Class 10 Maths Chapter 6, Triangles , is part of the Unit Geometry which constitutes 15 marks of the total marks of 80. On the basis of the CBSE Class 10 syllabus, this chapter belongs to the unit that has the second-highest weightage. Hence, having a clear understanding of the concepts, theorems and the problem-solving methods in this chapter is mandatory to score well in the Board examination of class 10 maths.

Main topics covered in this chapter include:

6.1 Introduction

From your earlier classes, you are familiar with triangles and many of their properties. In Class 9, you have studied congruence of triangles in detail. In this chapter, we shall study about those figures which have the same shape but not necessarily the same size. Two figures having the same shape (and not necessarily the same size) are called similar figures. In particular, we shall discuss the similarity of triangles and apply this knowledge in giving a simple proof of Pythagoras Theorem learnt earlier.

6.2 Similar Figures

In Class 9, you have seen that all circles with the same radii are congruent, all squares with the same side lengths are congruent and all equilateral triangles with the same side lengths are congruent. The topic explains similarity of figures by performing relevant activity. Similar figures are two figures having the same shape but not necessarily the same size.

6.3 Similarity of Triangles

The topic recalls triangles and its similarities. Two triangles are similar if (i) their corresponding angles are equal and (ii) their corresponding sides are in the same ratio (or proportion). It explains Basic Proportionality Theorem and different theorems are discussed performing various activities.

6.4 Criteria for Similarity of Triangles

In the previous section, we stated that two triangles are similar (i) their corresponding angles are equal and (ii) their corresponding sides are in the same ratio (or proportion). The topic discusses the criteria for similarity of triangles referring to the topics we have studied in earlier classes. It also contains different theorems explained with proper examples.

6.5 Areas of Similar Triangles

You have learnt that in two similar triangles, the ratio of their corresponding sides is the same. The topic Areas of Similar Triangles consists of theorem and relatable examples to prove the theorem.

6.6 Pythagoras Theorem

You are already familiar with the Pythagoras Theorem from your earlier classes. You have also seen proof of this theorem in Class 9. Now, we shall prove this theorem using the concept of similarity of triangles. Hence, the theorem is verified through some activities and make use of it while solving certain problems.

6.7 Summary

The summary contains the points you have studied in the chapter. Going through the points mentioned in the summary will help you to recollect all the important concepts and theorems of the chapter.

List of Exercises in NCERT Class 10 Maths Chapter 6:

Exercise 6.1 Solutions 3 Questions (3 Short Answer Questions)

Exercise 6.2 Solutions 10 Questions (9 Short Answer Questions, 1 Long Answer Question)

Exercise 6.3 Solutions 16 Questions (1 main question with 6 sub-questions, 12 Short Answer Questions, 3 Long Answer Questions)

Exercise 6.4 Solutions 9 Questions (2 Short Answer with Reasoning Questions, 5 Short Answer Questions, 2 Long Answer Questions)

Exercise 6.5 Solutions 17 Questions (15 Short Answer Questions, 2 Long Answer Questions)

Exercise 6.6 Solutions 10 Questions (5 Short Answer Questions, 5 Long Answer Questions)

Triangle is one of the most interesting and exciting chapters of the unit Geometry as it takes us through the different aspects and concepts related to the geometrical figure triangle. A triangle is a plane figure that has three sides and three angles. This chapter covers various topics and sub-topics related to triangles including the detailed explanation of similar figures, different theorems related to the similarities of triangles with proof, and the areas of similar triangles. The chapter concludes by explaining the Pythagoras theorem and the ways to use it in solving problems. Read and learn Chapter 6 of the Class 10 Maths NCERT textbook to learn more about Triangles and the concepts covered in it. Ensure to learn the NCERT Solutions for Class 10 effectively to score high in the board examination.

Key Features of NCERT Solutions for Class 10 Maths Chapter 6 โ€“ Triangles

  • Helps to ensure that the students use the concepts in solving the problems.
  • Encourages the children to come up with diverse solutions to problems.
  • Hints are given for those questions which are difficult to solve.
  • Helps the students in checking if the solutions they gave for the questions are correct or not.
Also Access 
NCERT Exemplar for Class 10 Maths Chapter 6 Triangle 
CBSE Notes for Class 10 Maths Chapter 6 Triangle

Frequently Asked Questions on NCERT Solutions for Class 10 Maths Chapter 6

Why should we learn all the concepts present in NCERT Solutions for Class 10 Maths Chapter 6?

The concepts covered in Chapter 6 of NCERT Solution Maths provide questions based on the exam pattern and model question paper. So it is necessary to learn all the concepts present in NCERT Solutions for Class 10 Maths Chapter 6.

List out the important topics present in NCERT Solutions for Class 10 Maths Chapter 6?

The topics covered in the chapters are Introduction to the triangles, similar figures, similarity of triangles, criteria for similarity of triangles, areas of similar triangles and Pythagoras Theorem. These concepts are important from an exam perspective. It is strictly based on the latest syllabus of the CBSE board, and also depends on the CBSE question paper design and marking scheme.

How many exercises are there in NCERT Solutions for Class 10 Maths Chapter 6?

There are 6 exercises are there in NCERT Solutions for Class 10 Maths Chapter 6. The first exercise contains 3 questions, the second exercise contains 10 questions, the third exercise has 16 questions, the fourth exercise has 9 questions, the fifth exercise has 17 questions and the last or sixth exercise has ten questions based on the concepts of triangles.

Leave a Comment

Your email address will not be published. Required fields are marked *